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Neural networks for BEM analysis of steady viscous �ows

Nam Mai-Duy and Thanh Tran-Cong∗;†

Faculty of Engineering and Surveying; University of Southern Queensland; Toowoomba; Qld 4350; Australia

SUMMARY

This paper presents a new neural network-boundary integral approach for analysis of steady viscous
�uid �ows. Indirect radial basis function networks (IRBFNs) which perform better than element-based
methods for function interpolation, are introduced into the BEM scheme to represent the variations
of velocity and traction along the boundary from the nodal values. In order to assess the e�ect of
IRBFNs, the other features used in the present work remain the same as those used in the standard
BEM. For example, Picard-type scheme is utilized in the iterative procedure to deal with the non-linear
convective terms while the calculation of volume integrals and velocity gradients are based on the
linear �nite element-based method. The proposed IRBFN-BEM is veri�ed on the driven cavity viscous
�ow problem and can achieve a moderate Reynolds number of 1400 using a relatively coarse uniform
mesh. The results obtained such as the velocity pro�les along the horizontal and vertical centrelines as
well as the properties of the primary vortex are in very good agreement with the benchmark solution.
Furthermore, the secondary vortices are also captured by the present method. Thus, it appears that
an ability to represent the boundary solution accurately can signi�cantly improve the overall solution
accuracy of the BEM. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: boundary element method; viscous �ow problem; driven cavity �ow; interpolation;
indirect radial basis function network

1. INTRODUCTION

Boundary element method (BEM) has become a popular tool for analysis of engineering prob-
lems (e.g. Banerjee and Butter�eld [1] and Brebbia et al. [2]). An advantage of the BEM
is that the method allows the problem dimensionality to be reduced by one, resulting in rel-
atively small system of equations in comparison with the ones associated with �nite element
method and �nite di�erence method. In the standard BEM procedure, the boundary solution
can be �rst obtained by solving a system of integral equations and the internal solution is then
computed based on the boundary solution. For many linear problems such as potential �ows
governed by Laplace equation, linear elasticity (Navier equations) and viscous creeping �ows
(Stokes equations), the discretization of the governing equations needs to be performed on
the boundary only. However, for non-linear or inhomogeneous problems, for example viscous
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�ows governed by Navier–Stokes equations or heat transfer problems governed by Poisson
equation, discretization of the full domain is required due to the appearance of volume in-
tegrals. Nevertheless, the method is still attractive for solving certain classes of problems
without large storage requirements. Recently, the particular solution technique (PS) (Zheng
et al. [3]), dual reciprocity method (DRM) (Partridge et al. [4]) and multiple reciprocity
method (MRM) (Nowak and Neves [5]) were developed successfully to reduce volume inte-
grals to boundary integrals, which produce a true boundary integral formulation.
With regard to the numerical solution of viscous �uid �ow problems, Kitagawa [6] and

Power and Wrobel [7] gave excellent reviews of achievements by the BEM. The di�culties
in solving the Navier–Stokes equations lie in the treatment of non-linear convective terms
due to the lack of a fundamental solution corresponding to those equations. The �rst attempt
to solve viscous incompressible �ows at non-zero Reynolds numbers using boundary element
formulation with the Stokeslet fundamental solutions was made by Bush and Tanner [8] where
the convective terms, which generate volume integrals, were lumped together to form a forcing
function (pseudo-body forces) and then handled via an iterative procedure using a successive
substitution scheme. In that work, constant elements were used at the boundary while the
velocity gradients and the volume integrals were treated by volume discretization using linear
triangle elements with the nodal velocities taken from the previous iteration. Solutions were
obtained at low Reynolds numbers (e.g. Re up to 30 for the Hamel �ow problem). Tosaka and
Onishi [9] enhanced the implementation of Bush and Tanner by utilizing a Newton–Raphson
scheme for the solution of system of non-linear equations and also by integrating the volume
integral by part in order to eliminate the need for the calculation of velocity gradients. The
method was then applied to solve the driven cavity �ow problem and the result was reported
for the Reynolds number of 100 using a mesh of 82 linear boundary elements and 840
linear triangular interior cells. In Kitagawa et al.’s work [10], a penalty function formulation
was used and the velocity gradients were calculated directly by di�erentiating the integral
equations. In that work, the value of the penalty parameter was recommended to be of order
1:e4 to 1:e6 for general use. Numerical experiments showed that smaller values degrade the
accuracy of the solution while larger values tend to spoil its convergence. The results of
driven cavity �ow were reported for the Reynolds number up to 400 using a non-uniform
mesh of 160 linear boundary elements and 157 rectangular constant internal cells. Similarly,
by using the PS technique/DRM instead of the cell integration approach, the BEM is still able
to perform well for �ows at low Reynolds numbers, but there is no indication that higher
Reynolds number or accuracy are achieved. For example, the PS technique was applied to
the case of the Hamel �ow problem and also the plane jet problem (Zheng et al. [11])
and the maximum Reynolds numbers achieved were 40 and 14, respectively. The DRM was
also tested in the case of steady viscous �ow inside a closed circular cylindrical container,
where the bottom and side walls are rotating with constant angular velocity while the top is
�xed (Power and Partridge [12]) and numerical calculations were carried out for Re=1; 32
and 100. Another approach based on the combination of an indirect BEM and DRM was
applied to the study of 3D driven cavity viscous �ow problem and the solution was given for
Re=100 (Power and Botte [13]). Recently, Florez et al. [14] stated that the traditional DRM
approaches usually diverge for Re¿200 in complex �ow con�gurations.
In the BEM literature, for the simulation of �ows at higher Reynolds numbers, such as

Re=1000, to be successful, the BEM needs to be supplemented by some other features,
e.g. higher order elements, adaptive integration, multiregion capability and velocity splitting
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(Dargush and Banerjee [15]); domain decomposition and convective kernel (the use of con-
vective kernel, instead of the usual Stokeslet one, was pioneered by Bush [16]) (Grigoriev
and Fafurin [17] and Grigoriev and Dargush [18]); domain decomposition and DRM (Power
and Mingo [19] and Florez et al. [14]); higher order domain cells, upwind and central �nite
di�erence approximations (Aydin and Fenner [20, 21]).
Recently, Mai-Duy and Tran-Cong [22] have shown that the indirect radial basis function

networks (IRBFNs) perform better than element-based methods for function interpolation. In
this paper, it is shown that the approximation of boundary solution by IRBFNs also signi�-
cantly improves the performance of the BEM in terms of higher Reynolds number achievement
and accuracy of the solution. By using the IRBFN interpolations to represent the variations
of velocity and traction along the boundary from the nodal values while still keeping the
use of Stokeslet fundamental solutions together with the standard treatments for the convec-
tive terms (e.g. a successive substitution scheme and linear cell approximations), the proposed
IRBFN-BEM can achieve a Reynolds number of 1400 using a relatively coarse uniform mesh.
Convergence is very slow at Reynolds number of 1400 which is here considered as a limit of
the present approach, which does not give appropriate treatment to the convective term. Al-
though the neural network approach can also be used in the treatment of the volume integral
via the particular solution technique (Nguyen-Thien and Tran-Cong [23]), it is not employed
here since the aim is to show that neural network approximation can be a better alternative
to the traditional boundary element approximation and this comparison can only be done if
all other parameters are kept the same as those reported in the literature. Furthermore, there
is evidence to show that neither accuracy (Ingber et al. [24]) nor convergence (Power and
Mingo [19]) is improved when volume integrals are approximated by similar techniques, such
as dual reciprocity and particular solution. The results obtained by the present method such
as the velocity pro�les along the horizontal and vertical centrelines as well as the properties
of the primary vortex are in very good agreement with the benchmark solution. Furthermore,
the secondary vortices are also clearly captured. The paper is organized as follows. A brief
review of indirect RBFN is given in Section 2 and in Section 3 the IRBFN is then introduced
into the BEM scheme to approximate the boundary solution for analysis of steady viscous
�ow problems. In Section 4, the proposed method is veri�ed through the simulation of driven
cavity steady viscous �ow. Section 5 gives some concluding remarks.

2. REVIEW OF IRBFNs

Radial basis function networks (RBFNs) for approximation and interpolation of function have
received a great deal of attention over the last few decades (e.g. Haykin [25]). The RBF
network allows a conversion of a function to be approximated from low dimension space
(e.g. 1D–3D) to high dimensional space in which the function can now be expressed as a
linear combination of radial basis functions

y(x)≈f(x)=
m∑
i=1

w(i)g(i)(x) (1)

where m is the number of radial basis functions, {g(i)}mi=1 is the set of chosen radial basis
functions and {w(i)}mi=1 is the set of weights to be found. It has been proved that RBFNs with
one hidden layer are capable of universal approximation (Girosi and Poggio [26] and Park and
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Sandberg [27]) and as a result, they take place in many applications in di�erent disciplines.
In the �eld of numerical solution of Partial Di�erential Equations (PDEs), some RBFNs were
successfully used in the boundary element method to transform the volume integrals into
equivalent boundary integrals (Zheng et al. [11] and Power and Partridge [12]). Furthermore,
the networks were also developed successfully to solve PDEs in procedures which are regarded
as truly mesh-free methods (e.g. References [28–31]). However, it should be noted that it
is still very hard to achieve such an universal approximation RBFN in practice due to the
di�culties associated with choosing the network parameters such as the number of radial basis
functions, their positions and widths. In a previous work, Mai-Duy and Tran-Cong [22] pro-
posed Indirect RBFNs (IRBFNs) which are based on the integration process, and their results
showed that the IRBFNs perform better than the usual Direct RBFNs (DRBFNs) in terms of
accuracy and convergence rate for both function and its derivatives. In this paper, the IRBFN
is introduced into the BEM scheme to approximate the boundary solution for the analysis of
2D steady viscous �uid �ow problems. In contrast to previous works [22, 30, 31] where the
neural networks were used to approximate globally (meshless) the strong form of the govern-
ing equations (PDEs), the present work deals with the use of neural networks in the boundary
element part of the mesh which discretises the inverse statement of the governing equations.
In view of the fact that the BEM allows the reduction of the problem dimensionality by one,
only the IRBFN for function and its derivatives (e.g. up to the second order) in 1D needs to
be employed here and its formulation with multiquadric (MQ) is brie�y recaptured as follows:

y′′(s)≈f′′(s) =
m∑
i=1

w(i)g(i)(s) (2)

y′(s)≈f′(s) =
m∑
i=1

w(i)H (i)(s) + C1 (3)

y(s)≈f(s) =
m∑
i=1

w(i) �H (i)(s) + C1s+ C2 (4)

where s is the curvilinear co-ordinate (arclength), C1 and C2 are constants of integration and

g(i)(s)= ((s− c(i))2 + a(i)2)1=2 (5)

H (i)(s) =
∫

g(i)(s) ds=
(s− c(i))((s− c(i))2 + a(i)2)1=2

2

+
a(i)2

2
ln((s− c(i)) + ((s− c(i))2 + a(i)2)1=2) (6)

�H (i)(s) =
∫

H (i)(s) ds=
((s− c(i))2 + a(i)2)3=2

6

+
a(i)2

2
(s− c(i)) ln((s− c(i)) + ((s− c(i))2 + a(i)2)1=2)

− a(i)2

2
((s− c(i))2 + a(i)2)1=2 (7)
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in which {c(i)}mi=1 is the set of centres and {a(i)}mi=1 is the set of RBF widths. The RBF width
is chosen based on the following simple relation:

a(i) =�d(i)

where � is a factor and d(i) is the minimum arclength between the ith centre and its neighbour-
ing centres. Since C1 and C2 are to be found, it is convenient to let w(m+1) =C1, w(m+2) =C2,
�H (m+1)= s and �H (m+2)=1 in (4) which becomes

y(s)≈f(s) =
m+2∑
i=1

w(i) �H (i)(s) (8)

�H (i)= RHS of (7); i=1; : : : ; m (9)

�H (m+1)= s (10)

�H (m+2) = 1 (11)

The detailed implementation and accuracy of the IRBFN method were reported previously
(Mai-Duy and Tran-Cong [22]). In the following section, the IRBFN is coupled with boundary
integral equations for analysis of steady viscous �uid �ows.

3. A NEW NEURAL NETWORK-BOUNDARY INTEGRAL APPROACH

3.1. Governing equations

The equations of motion and mass conservation for the steady �ow of an incompressible
viscous �uid can be written using Cartesian tensor notation as follows:

�ui; jj − p; i = �ujui; j (12)

ui; i =0 (13)

where ui is the velocity, � the �uid density, p the pressure and � the viscosity. Equations
(12)–(13) can be reformulated in terms of integral equations for a given spatial point y as
follows:

cij(y)uj(y) =
∫
�
Uij(y;x)tj(x) d�(x)

−CPV
∫
�
Tij(y;x)uj(x) d�(x) + �

∫
�
Uij(y;x)bj(x) d�(x) (14)

Uij(y;x) =
1
4��

[ri
r

rj
r
− �ij ln(r)

]
(15)

Tij(y;x) =− 1
�r

[
ri
r

rj
r

@r
@n

]
(16)

where CPV is Cauchy principal value, Uij and Tij the Stokeslet fundamental solutions, uj and
tj the velocity and the traction, respectively, bj=−ukuj; k the pseudo-body force containing
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the convective term, cij the free term which is �ij if y is an internal point and 0:5�ij if y is
a point on the smooth boundary, ri= xi − yi, r= ‖x − y‖ and n the outwardly normal unit
vector.

3.2. Approximation of the boundary solution by IRBFN

Integral equations allow the solving process to be con�ned to the boundary. After the process
is done, the boundary solution obtained provides sources to compute the internal solution.
It can be seen that the accuracy of the boundary solution greatly a�ects the accuracy of
the overall solution. As mentioned earlier, neural networks are able to approximate arbitrarily
well continuous functions. In this section, the IRBFNs are employed to represent the boundary
solution. For simplicity of notation, the volume integral in (14) is ignored in the following
discussion.
In the standard BEM, local interpolations are used to approximate the boundary solution

via a subdivision of the boundary � into a number of small elements. On each element, the
geometry and the variations of uj and tj are assumed to have a certain shape such as linear
and quadratic ones. The CPV integrals can be indirectly computed by applying Equation (14)
to represent rigid body displacements while the weakly singular ones can be evaluated using
the well-known techniques such as logarithmic Gaussian quadrature and Telles’ transformation
technique (Telles [32]).
In the present method, global approximations using IRBFNs are employed. The boundary is

also divided into a number of segments but with much larger size, provided that the associated
boundaries are smooth and the prescribed boundary conditions are of the same type. On each
segment, the variations of uj and tj and the curved geometry (if it exists) are approximated
by neural networks. Due to the fact that none of basis functions employed in the network are
null at the singular point (the point where the �eld point x and the source point y coincide),
the method for evaluating the CPV integrals in the standard BEM cannot be applied directly
here. To overcome this di�culty, the BIE formulation (14) needs to be rewritten in the form
without CPV singularity as follows:∫

�
Tij(y;x)(uj(x)− uj(y)) d�(x)−

∫
�
Uij(y;x)tj(x) d�(x)=0 (17)

In the discretized form, Equation (17) becomes

Ns∑
k=1

∫
�k

Tij(y;x)(uj(k)(x)− uj(l)(y)) d�k −
Ns∑
k=1

∫
�k

Uij(y;x)tj(k)(x) d�k =0 (18)

where Ns is the number of segments, subscript (k) denotes general segments and the sub-
script (l) indicates the segment containing the source point y. The variations of velocity uj(k)
and traction tj(k) on segment �k are now represented by the IRBF networks in terms of the
curvilinear co-ordinate s as (Equation (8))

uj(k) =
mk+2∑
i=1

w(i)uj(k) �H
(i)
(k)(s) (19)

tj(k) =
mk+2∑
i=1

w(i)tj(k) �H
(i)
(k)(s) (20)
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where s ∈ �k , mk is the number of training points on the segment k, {w(i)uj(k)}mk+2
i=1 and {w(i)tj(k)}mk+2

i=1
are the sets of weights of networks for the velocity uj(k) and traction tj(k) respectively. Simi-
larly, the geometry can be interpolated from the nodal values by using IRBFNs as

x1(k) =
mk+2∑
i=1

w(i)x1(k) �H
(i)
(k)(s) (21)

x2(k) =
mk+2∑
i=1

w(i)x2(k) �H
(i)
(k)(s) (22)

Substitution of (19) and (20) into (18) yields

Ns∑
k=1

∫
�k

Tij(y;x)
(

mk+2∑
i=1

w(i)uj(k) �H
(i)
(k)(sx)−

ml+2∑
i=1

w(i)uj(l) �H
(i)
(l)(sy)

)
d�k

−
Ns∑
k=1

∫
�k

Uij(y;x)
(

mk+2∑
i=1

w(i)tj(k) �H
(i)
(k)(sx)

)
d�k =0 (23)

or,

Ns∑
k=1

{
mk+2∑
i=1

w(i)uj(k)

(∫
�k

Tij(y;x) �H
(i)
(k)(sx) d�k

)
−

ml+2∑
i=1

w(i)uj(l)

(∫
�k

Tij(y;x) �H
(i)
(l)(sy) d�k

)}

−
Ns∑
k=1

mk+2∑
i=1

w(i)tj(k)

(∫
�k

Uij(y;x) �H
(i)
(k)(sx) d�k

)
=0 (24)

where mk can vary from segment to segment. Equation (24) is formulated in terms of the
IRBFN weights of networks for uj and tj rather than the nodal values of uj and tj as in the
case of standard BEM. Clearly, the weakly singular integrals in (24) can be treated as in the
case of standard BEM. The process of locating the source point y at all boundary training
points results in an underdetermined system of non-linear equations with the unknown being
the IRBFN weights. In the present work, an iterative procedure using Picard-type scheme
is employed to render non-linear terms linear. A relaxation of the velocity �eld is applied
at each iterative step and is discussed in Section 4.2 below. Thus, at each iteration, the
system of linear equations obtained, which can have many solutions, needs to be solved in
the general least squares sense. The preferred solution is the one whose values are smallest
in the least squares sense (i.e. the norm of components is minimum). This can be achieved
by using singular value decomposition technique (SVD). The procedural �ow chart can be
brie�y summarized as follows:

1. Divide the boundary into a relatively small number of segments over each of which the
boundary is smooth and the prescribed boundary conditions are of the same type;

2. Apply the IRBFNs for approximation of the prescribed physical boundary conditions in
order to obtain IRBFN weights which are the boundary conditions in the weight space;

3. Initialize the velocity vector �eld and then compute the pseudo-body forces and the
volume integrals. The latter are calculated using polar co-ordinates where the singularity
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is weaken by the Jacobian before numerical integration by Gaussian quadrature is carried
out (Ramachandran [33, p. 43]);

4. Form the system of equations and impose the boundary conditions obtained from the
step 2;

5. Solve the system for IRBFN weights by SVD technique (under-determined system);
6. Compute the boundary solution by using the IRBFN interpolation;
7. Compute the velocity and its derivatives at internal points;
8. Check for convergence. Convergence measure (CM) at the kth iteration is de�ned as
follows:

CM=

√∑n
i=1[(u

k
1(x

(i))− uk−1
1 (x(i)))2 + (uk

2(x
(i))− uk−1

2 (x(i)))2]∑n
i=1[(u

k
1(x(i)))2 + (u

k
2(x(i)))2]

where n is the number of boundary and internal points. The solution procedure is termi-
nated when CM¡tol, where tol is a set tolerance;

9. If not yet converged, relax the velocity �eld, update the pseudo-body forces, recompute
the volume integral and then repeat from the step 5; or exit if it is deemed that the
procedure will not converge;

10. If converged, output the results.

Note that the system matrix obtained at the step 4 depends only on the geometry of the
problem and hence the SVD needs to be done only once at the �rst iteration while the RHS
vector containing the volume integrals is updated during the iteration process.

4. NUMERICAL RESULTS

4.1. General results

The benchmark problem of steady viscous �ow in an unitary square cavity (Roache [34]) is
simulated in this section to verify the present method. The top wall moves with a uniform
velocity of 1 in its own plane while the other walls are �xed (Figure 1). Here the Reynolds
number is de�ned as Re=�UH=�, where U is the characteristic velocity, H the characteristic
length, � the density and � the viscosity. This problem is geometrically simple and used
for decades as a test problem to verify and validate numerical methods in computational
science and engineering. Ghia et al. [35] produce a benchmark solution that is often cited for
comparison purposes.
There are many works in literature using BEM to simulate the driven cavity steady viscous

�ow. For the simulation of �ows at moderate and high Reynolds numbers, recent trends are to
incorporate BEM with domain decomposition techniques or to use high order volume elements
for the evaluation of the volume integrals.
In the present work, the idea is to use the IRBFN interpolations to represent the boundary

solution. To check the e�ect of this proposal, the other features used here remain the same as
those used in Bush and Tanner’s work [8], for the reasons explained earlier in the introduction:
e.g. Picard-type iterations are applied and linear cell-based approximations are employed to
treat the volume integral and the velocity gradient. Note that all the following numerical
solutions for each Reynolds number are obtained starting from the condition of �uid at rest
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x1

x2

u = (0, 0)
→u = (0, 0)

→

u = (1, 0)
→

u = (0, 0)
→

Figure 1. Driven cavity �ow problem: geometry de�nition, boundary condition and dis-
cretization. Legends ◦: boundary point and �: internal point. The boundary is simply
represented by the set of points (i.e. there are no boundary elements involved in variable

interpolation). The volume cells are the same as in other comparative works.

Table I. Driven cavity viscous �ow: a number of meshes are used for the study of convergence.

Mesh Boundary points Internal points Triangle elements

11× 11 11× 4 9× 9 208
17× 17 17× 4 15× 15 520
21× 21 21× 4 19× 19 808
33× 33 33× 4 31× 31 2056

and the tolerance for convergence criterion is set at tol=5e − 3. The factor � is chosen to
be unity, except where otherwise stated. The boundary of domain is divided into 4 segments
corresponding to the four edges of the cavity and on each segment, the set of boundary points
becomes the set of centres and also the set of collocation points of the network. In order to
be able to present the correct description of multivalued traction at the corner, the extreme
centres on each segment are shifted into the segment by a 1=4 of the distance between two
adjacent centres (Figure 1). A number of uniform data meshes, namely 11× 11 (i.e. 11× 4
boundary points and 9× 9 internal points), 17× 17, 21× 21 and 33× 33 (Table I), are
utilized for the study of mesh convergence. For Reynolds number Re=100, four meshes are
employed. The velocity pro�les along the vertical and horizontal centrelines obtained by the
present IRBFN-BEM together with the benchmark solution by Ghia et al. [35] are displayed
in Figure 2(a) and 2(b) showing that close agreements are achieved. Figure 2(c) shows the
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Figure 2. Driven cavity �ow, Re=100: mesh convergence by the present IRBFN-BEM.
Legend ◦ denotes the result obtained by Ghia et al. [35]. The velocity vector �eld obtained
with a mesh 33× 33 is also displayed. (a) u1 on the vertical centreline; (b) u2 on the

horizontal centreline; (c) velocity vector �eld.

velocity vector �eld obtained using the �nest mesh. For the purpose of checking the e�ect of
� on the solution, another test is also done with the mesh of 11× 11. The present method
converges for all values of � in the range of 1–9 with an increment of 2, and all solutions
agree well with the benchmark solution, which shows that the BEM solution is relatively
independent of the value of RBF width. For moderate Reynolds numbers of 400 and 1000,
the last three meshes are used to simulate the �ows. As shown in Figures 3 and 4, there are
good agreements between the present results and the benchmark solution even in the case of
very coarse mesh of 17× 17. The achieved solution with the coarse mesh of 17× 17 seems
to indicate that the IRBFN interpolation yields superior accuracy in solving PDEs.
Other important results are the properties of the primary vortex and the existence of sec-

ondary vortices at the bottom corners. However, only few works in the BEM literature mention
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Figure 3. Driven cavity �ow, Re=400: mesh convergence by the present IRBFN-BEM.
Legend ◦ denotes the result obtained by Ghia et al. [35]. The velocity vector �eld obtained
with a mesh 33× 33 is also displayed. (a) u1 on the vertical centreline; (b) u2 on the

horizontal centreline; (c) velocity vector �eld.

those results. In the present work, the secondary vortices are captured and shown in Figures
5 and 6. Both secondary vortices at the bottom corners can be seen clearly using a mesh
of 33× 33 while in the work by Aydin and Fenner [20], where a mesh of 41× 41 was used,
the centre of the vortex at the left hand corner is not well de�ned and appears to be close to
the bottom boundary. Several properties of the primary vortex such as the location and the
minimum value of stream-function are given in Table II, showing that the present method
yields high accuracy in the primary vortex region. From Table II and Figures 2(c)–4(c), it
can be seen that the location of the vortex centre appears near the top right corner at Re=100
and then moves towards the geometric center of the cavity as the Reynolds number increases.
Figure 7 demonstrate the thinning of the boundary layers as the Reynolds number increases
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Figure 4. Driven cavity �ow, Re=1000: mesh convergence by the present IRBFN-BEM.
Legend ◦ denotes the result obtained by Ghia et al. [35]. The velocity vector �eld obtained
with a mesh 33× 33 is also displayed. (a) u1 on the vertical centreline; (b) u2 on the

horizontal centreline; (c) velocity vector �eld.

which is consistent with the results by Ghia et al. [35]. Since a result for the Reynolds num-
ber of 1400 is not available, the result for the Reynolds number of 1000 is included in the
�gure to demonstrate both the thinning of the boundary layers and the physical feasibility of
the solution.
The overall sense of solution accuracy can also be measured by computing the bulk con-

tinuity of the �ow. For the driven cavity �ow this is commonly achieved by computing the
�ow rate across the vertical plane (Q1) and the horizontal plane (Q2) passing through the
geometric centre of the cavity. A more accurate solution would necessarily yield both �ow
rates closer to the exact value of zero. The �ow rates Q1; Q2 for the three most re�ned
meshes and the three Reynolds numbers (100, 400, 1000) are shown in Tables III and IV.
The results show that the �ow rates consistently tend to zero as the mesh density increases
for all Reynolds numbers.
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Figure 5. Driven cavity �ow, Re=1000: the plot of secondary vortices captured using a mesh of 21× 21.
(a) Secondary vortex at the right corner; (b) secondary vortex at the left corner.

4.2. Relaxation in the iterative procedure

In the case of higher Reynolds number (Re¿400), it is necessary to relax the iterative process
by applying a relaxation factor to the velocity �eld according to

ui = �uk
i + (1− �)uk−1

i

ui; j = �uk
i; j + (1− �)uk−1

i; j

where � denotes the relaxation factor and the superscript k indicates the current iteration.
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Figure 6. Driven cavity �ow, Re=1000: the plot of secondary vortices captured using a mesh of 33× 33.
(a) Secondary vortex at the right corner; (b) secondary vortex at the left corner.

In general, it is observed that when the process is slightly relaxed (high relaxation factor
�), or not at all relaxed (�=1), the process is usually either non-convergent or fast conver-
gent. There are also some oscillations in an otherwise convergent process. It is found that
the iterative process behaves consistently where the convergence characteristics is slower, but
smoother, for smaller relaxation factors (Figure 8(a) and 8(b)). In Figure 8(a), the corre-
sponding results for the standard BEM are also presented. For the same relaxation factor, the
standard BEM either does not perform as well in the case of relaxation factor of 0.05, or
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Table II. Driven cavity viscous �ow: comparison of the properties of the primary vortex obtained by
the present IRBFN-BEM and the benchmark solution (Ghia et al. [35]).

Re=100 Re=400 Re=1000

 min Position  min Position  min Position

Bench. −0:103 (0:617; 0:734) −0:114 (0:555; 0:606) −0:118 (0:531; 0:563)
(129× 129)
Present −0:103 (0:612; 0:736) −0:116 (0:551; 0:598) −0:122 (0:539; 0:558)
(17× 17)
Present −0:103 (0:614; 0:737) −0:113 (0:553; 0:601) −0:119 (0:536; 0:558)
(21× 21)
Present −0:103 (0:616; 0:737) −0:112 (0:556; 0:603) −0:117 (0:533; 0:561)
(33× 33)
 min denotes the minimum value of stream-function.

Table III. Driven cavity viscous �ow: volumetric �ow rate across the vertical plane de�ned by
Q1 =1=Qc

∫
u1(x1 = 0:5; x2) dx2, where Qc is a characteristic �ow rate and chosen to be UH=2 as in

Aydin and Fenner [20] (i.e. the rate of the Couette �ow when ignoring two vertical walls).

Mesh Re=100 Re=400 Re=1000

17× 17 0.0030 −0:0049 −0:0179
21× 21 0.0027 −0:0018 −0:0100
33× 33 0.0019 0.0006 −0:0023
Note: Simpson’s rule is applied to compute the integral. For each of the Reynolds numbers, the value of
the �ow rate Q1 consistently approaches zero as the mesh density is increased, which shows that mesh
convergence is achieved for all of the cases studied here.

Table IV. Driven cavity viscous �ow: volumetric �ow rate across the horizontal plane de�ned by
Q2 =1=Qc

∫
u2(x1; x2 = 0:5) dx1, where Qc is a characteristic �ow rate and chosen to be UH=2 as in

Aydin and Fenner [20] (i.e. the rate of the Couette �ow when ignoring two vertical walls).

Mesh Re=100 Re=400 Re=1000

17× 17 −0:0021 −0:0133 −0:0302
21× 21 −0:0014 −0:0079 −0:0177
33× 33 −0:0006 −0:0028 −0:0062
Note: The integral is calculated using Simpson’s rule. For each of the Reynolds numbers, the value of the �ow
rate Q2 consistently approaches zero as the mesh density is increased, which shows that mesh convergence
is achieved for all of the cases studied here.

behaves badly in the case of relaxation factor of 0.07, which is contrary to expectation that a
higher relaxation factor should make convergence faster. Finally, for a given relaxation factor,
Figure 9 illustrates an important convergence characteristics of the present method where the
convergence rate improves with increasing mesh density.
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Figure 7. Driven cavity �ow, Re=1400, mesh density of 33× 33: Plots of velocity pro�le along the
vertical and horizontal centrelines. The results for Re=1000 is also displayed. It can be seen that the
velocity pro�les and also the velocity vector �eld (not displayed here for simplicity) are similar between
the two Reynolds numbers, however the boundary layers of the higher Reynolds number appear to be

thinner. (a) u1 on the vertical centreline; (b) u2 on the horizontal centreline.

4.3. Comparison with standard BEM results

Apart from the above comparison of the present results with the benchmark results of Ghia
et al. [35], comparison with the standard linear BEM results is also made in this section to
demonstrate the improvement achieved by the present method. It is reiterated here that the

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:743–763



BEM ANALYSIS OF STEADY VISCOUS FLOWS 759

0 100 200 300 400 500 600 700 800 900
10−3

10  −2

10

100

0

C
M

relaxation=0.05 (IRBFN-BEM) 
relaxation=0.07 (IRBFN-BEM) 
relaxation=0.05 (LINEAR-BEM) 
relaxation=0.07 (LINEAR-BEM) 

−1

0 500 1000 1500 2000 2500 3000 3500

Number of iterations

relaxation factor of 0.007
relaxation factor of 0.005
relaxation factor of 0.003

10−3

10−2

10

10

C
M

−1

(a)

(b)

Figure 8. Driven cavity �ow, mesh density of 17× 17: E�ect of the relaxation factor on the convergence
rate for (a) Re=400 and (b) Re=1000. In Figure 8(a), the results obtained by the standard Linear-BEM

are also included for the purpose of comparison.

general computational algorithm for the two methods are the same and the only distinguishing
feature between the two methods is that neural network approximation instead of conventional
Lagrange polynomial approximation is used in boundary elements. The comparison is based
on three aspects, namely solution accuracy, Reynolds number limit and computational time.
Figure 10 demonstrates the improvement in solution accuracy achieved by the present method
over the standard BEM results. The standard BEM fails to converge at Reynolds numbers
greater than 400 irrespective of the relaxation treatment whereas the Reynolds number of
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Figure 9. Driven cavity �ow problem, Re=1000, relaxation factor of 0.005: E�ect of mesh density on
the convergence rate. A higher mesh density consistently yields a faster convergence rate.

Table V. Driven cavity viscous �ow, Re=100, relaxation factor of 0.7: total CPU time used to obtain
a converged solution by Linear-BEM and IRBFN-BEM.

Mesh Linear-BEM IRBFN-BEM

Matrix size CPU time (s) Matrix size CPU time (s)

11× 11 88× 88 176 88× 104 109
17× 17 136× 136 762 136× 152 584
21× 21 168× 168 1703 168× 184 1352

Note: The code is written in the MATLAB language (version R11.1 by The MathWorks, Inc.), which was
run on a 1000 MHz Pentium PC. Note that MATLAB language is interpretative.

1400 is achieved by the present method. In terms of computational time, Table V shows that
the present method achieves a signi�cant improvement in e�ciency despite the fact that the
system matrix is slightly bigger for the same mesh density.

5. CONCLUDING REMARKS

This paper presents a new approach for analysis of steady viscous �ow problems in which
indirect RBFNs are introduced into the BEM scheme to approximate the boundary solution.
Global approximations using neural networks are employed along the boundary instead of
local approximations based on Lagrange polynomials. Numerical results obtained show that
the BEM solution is signi�cantly improved in terms of Reynolds number achievement and
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Figure 10. Driven cavity �ow, Re=400, mesh density of 17× 17: Comparison
of velocity pro�les along the horizontal and vertical centrelines obtained by
the present IRBFN-BEM and the standard linear-BEM. (a) v1 on the vertical

centreline; (b) v2 on the vertical centre line.

accuracy of the solution. Thus, this new approach is an alternative that can enhance the perfor-
mance of the BEM for analysis of steady viscous �ow. The improvement can be attributed to
the ability to represent the boundary solution accurately by the present IRBFNs. The present
method described in this paper is general and can be used to solve other non-linear prob-
lems such as non-Newtonian �ow problems, provided the non-linearity in the problem can be
lumped into the body-force term.
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